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Abstract. The geometric factors in the field commutators and spring constants of the measurement
devices in the famous analysis of the measurability of the electromagnetic field by Bohr and
Rosenfeld are calculated using a Fourier–Bessel method for the evaluation of folding integrals,
which enables one to obtain the general geometric factors as a Fourier–Bessel series. When the
space regions over which the factors are defined are spherical, the Fourier–Bessel series terms are
given by elementary functions, and using the standard Fourier-integral method of calculating folding
integrals, the geometric factors can be evaluated in terms of manageable closed-form expressions.

1. Introduction

The fundamental importance of the famous paper of Bohr and Rosenfeld [1] on the
measurability of the electromagnetic field is acknowledged by most physicists but, curiously,
the paper seems to have been read by only a few at the time of its appearance in the early 1930s†,
and undoubtedly by still less in the more recent times‡. The Bohr–Rosenfeld (BR) paper arose
in a response to Landau and Peierls [3], who argued that, in principle, the electromagnetic
field is not measurable in a domain where quantum and relativistic effects are important. In
their paper, BR have refuted this claim by showing that in quantum electrodynamics, just as
in nonrelativistic quantum mechanics, there is a complete harmony between the theoretical
formalism and the physical possibilities of measurement. The essential aspects of the BR
analysis that enabled them to reach this conclusion are the realization that only field quantities
averaged over finite space-time regions are physically meaningful, and the employment of
essentially classical test bodies of finite size that can have arbitrarily large charge and mass,
which removed immediately the limit on the field measurability due to the radiation-reaction
force on the point test charges employed by Landau and Peierls. BR have shown that the
electromagnetic-field effects of such finite-size test bodies can be minimized to exactly the
extent demanded by the formalism’s commutation relations by using classical spring and lever
mechanisms connecting the test bodies to the frame of reference and to each other, together

† A Pais says in his book on N Bohr [2]: ‘From decades of involvement with quantum field theory I can testify that
nevertheless it has been read by very very few of theaficionados. The main reason is, I think, that even by Bohr’s
standards this paper is very difficult to penetrate. It takes inordinate care and patience to follow Bohr’s often quite
complex gyrations with test bodies. . . As a friend of Bohr and mine once said to me: ‘It is a very good paper that one
does not have to read. You just have to know it exists.’ Nevertheless men like Pauli and Heitler did read it with great
care.’
‡ A contributing factor to that must have been that the paper had not been available in an English translation for a
long time.

0305-4470/99/122427+19$19.50 © 1999 IOP Publishing Ltd 2427



2428 V Hnizdo

with the deployment of neutralizing bodies that occupy the same space regions as the test bodies
but which are charged oppositely and remain attached rigidly to the reference frame during the
duration of a measurement. The harmony between the possibilities of definition afforded by
the quantum-electrodynamic formalism and the possibilities of measurement could be attained
only by the masterful exploitation by BR of all the opportunities offered to measurement by
classical physics while at the same time paying due regard to the limitations imposed on the
latter by quantum mechanics†.

Several illuminating commentaries on the BR analysis have been written [2,5–7], some of
them by authors who were close to the original controversy. While the BR field measurement
philosophy has not been accepted unreservedly by all the writers [6], the technical correctness
of the BR analysis has not been disputed. Very recently, however, an analysis [8] of
the BR procedure for the measurement of a single space-time-averaged component of the
electromagnetic field has drawn a conclusion that no compensating spring mechanism is needed
in order to measure the averaged field component to arbitrary accuracy when no neutralizing
body is employed. This work is commented on critically elsewhere [9], using the calculational
methods developed in this paper.

The field commutation relations that BR use as the starting point of their analysis, and the
spring constants of the mechanisms employed in their measurement procedures, are defined
in terms of geometric factors that are averages over two finite four-dimensional space-time
regions. As this amounts formally to an eight-dimensional integration, the calculation of
the value of a field commutator for finite space-time regions, or of a BR spring constant,
is not simple, even though the dimensionality of the integration is reduced, albeit not in a
straightforward manner, by the presence of a delta function in the integrand. To the present
author’s knowledge, no calculations of these quantities have been reported in the literature yet,
apart from those for coinciding spherical space-time regions in the comment [9] on [8]. Clearly,
a well-controlled algorithm for the evaluation of the field commutators for finite space-time
regions and the BR spring constants is desirable—not least because these quantities amount
essentially to the field effects of extended charged bodies, a quantitative assessment of which
may be needed in special experimental situations‡.

In this paper, the Fourier–Bessel method developed for an efficient and accurate evaluation
of multiple folding integrals [10] is adapted for the calculation of general BR geometric factors.
However, the standard Fourier-integral method for calculating folding integrals will turn out
to be more advantageous in the special case of spherical space regions, as it will enable us to
evaluate the BR geometric factors with spherical space regions in closed form.

In section 2 of this paper, the BR field commutators are introduced, and the Fourier–
Bessel method for calculating the general geometric factors in terms of which the field
commutators and the BR spring constants are defined is developed. In section 3, geometric
factors with spherical space regions are considered; these are first calculated using Fourier–
Bessel expansions, and then evaluated in closed form. In the last section, some calculational
results are presented and discussed, and concluding remarks are made.

† In the course of their analysis, BR had to examine the problem of measurement of the basic mechanical quantities
of position, momentum and energy in more detail than had been done in the previous writings of Bohr and Heisenberg,
and established the possibility of repeatable momentum and energy measurements that may be of arbitrarily short
duration, which were rediscovered some 30 years later by Aharonov and Bohm [4].
‡ For example, direct detection of gravitational waves would require repeated measurements of very high accuracy
on a single object in a regime where quantum effects are important. In these so-called ‘quantum nondemolition’
measurements, experimental precision is pushed to the limits set by the principles of quantum mechanics and quantum
electrodynamics; under such or similar circumstances, the measurement procedures and results of the BR analysis
may well be of practical relevance [11].
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2. Fourier–Bessel expansions of the BR geometric factors

The starting point in the BR analysis is the set of electromagnetic-field commutation relations
for the operators of field averages over finite space-time regions instead of for those of the field
values at space-time points:

[Ē (I)x , Ē (II )x ] = [H̄(I)x , H̄(II )x ] = ih̄(Ā(I,II )xx − Ā(II ,I)xx ) (1)

[Ē (I)x , Ē (II )y ] = [H̄(I)x , H̄(II )y ] = ih̄(Ā(I,II )xy − Ā(II ,I)xy ) (2)

[Ē (I)x , H̄(II )x ] = 0 (3)

[Ē (I)x , H̄(II )y ] = −[H̄(I)x , Ē (II )y ] = ih̄(B̄(I,II )xy − B̄(II ,I)xy ). (4)

Here,Ē (I)x , H̄(I)x , etc are the electric and magnetic field components averaged over a space-time
region I of volumeVI and durationTI , as, for example,

Ē (I)x =
1

VITI

∫
TI

dt1

∫
VI

dv1 Ex(x1, y1, z1, t1) (5)

and the right-hand-side quantities are purelygeometric factorsdefined in terms of double
averages over space-time regions I and II:

Ā(I,II )xx = −
1

VI,II

∫
TI

dt1

∫
TII

dt2

∫
VI

dv1

∫
VII

dv2

(
∂2

∂x1∂x2
− 1

c2

∂2

∂t1∂t2

)[
1

r
δ
(
t2 − t1− r

c

)]
(6)

Ā(I,II )xy = −
1

VI,II

∫
TI

dt1

∫
TII

dt2

∫
VI

dv1

∫
VII

dv2
∂2

∂x1∂y2

[
1

r
δ
(
t2 − t1− r

c

)]
(7)

B̄(I,II )xy = − 1

VI,II

∫
TI

dt1

∫
TII

dt2

∫
VI

dv1

∫
VII

dv2
1

c

∂2

∂t1∂z2

[
1

r
δ
(
t2 − t1− r

c

)]
(8)

whereVI,II = VIVIITITII andr is the distance between a space point in the region I and a space
point in the region II. The remaining commutation relations are obtained from (1)–(4) and
(6)–(8) by cyclic permutations.

A BR geometric factor, saȳC(I,II )U , can be written as

C̄
(I,II )
U = 1

1t11t2

∫ 1t1

0
dt1

∫ T +1t2

T

dt2

∫
ρ1(r1) dr1

∫
ρ2(r2) dr2U(t, r). (9)

Here, the time intervals associated with the space-time regions I and II are specified, without
loss of generality, as(0,1t1) and(T , T +1t2), respectively†, while the space regions are given
by the means of uniform density distributionsρ1(r1) andρ2(r2) that vanish outside the space
regions I and II, respectively, and are each normalized to unit volume; the coordinatesr1 and
r2 now refer to origins located conveniently inside the regions I and II so that the displacement
r of a space point of region II from a space point of region I is given asr = R + r2 − r1,
with R the displacement of the origin of region II from that of region I. The functionU(t, r)

in equation (9) is the integrand of the multiple integral defining the geometric factor; for the
geometric factors (6)–(8), it takes the following forms, respectively:

UAxx (t, r) = −
(

∂2

∂x1∂x2
− ∂2

∂t1∂t2

)
δ(t − r)

r
(10)

UAxy (t, r) = −
∂2

∂x1∂y2

δ(t − r)
r

(11)

† BR use the symbolsTI andTII for these time intervals, and the symbol1t for the durations of the momentum
measurements at the beginning and end of a field-measurement time interval.
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UBxy (t, r) = −
∂2

∂t1∂z2

δ(t − r)
r

(12)

where units such that the speed of lightc = 1 are now used, andt = t2− t1. The BR geometric
factor (9) is cast in the form of a time average of a double-folding integral whose integrand
involves functions that all have finite space extension, as the densitiesρk(rk) represent finite
regions of space, and the radial range of the functionU(t, r) is given byr = |r| = t as it
contains the delta functionδ(t − r) and its derivatives. As such, the BR geometric factors are
particularly well suited to evaluation by the means of Fourier–Bessel expansions [10].

To this end, the multipolesUlm(t, r) of the nonspherical functionU(t, r), defined by a
multipole expansion

U(t, r) =
∑
lm

Ulm(t, r)i
lYlm(r̂) (13)

are expanded as Fourier–Bessel series in spherical Bessel functionsjl(q
(l)
n r) in a range

06 r < rex:

Ulm(t, r) =
∞∑
n=1

c
(lm)
U n (t)jl(q

(l)
n r) (14)

whereq(l)n rex are the positive roots ofjl(x). The coefficientsc(lm)U n (t) in (14) are given in terms
of the multipolesUlm(t, r) as

c
(lm)
U n (t) =

1

w
(l)
n

∫ rex

0
Ulm(t, r)jl(q

(l)
n r)r

2 dr (15)

where

w(l)n =
rex

2
[rexj

′
l (q

(l)
n rex)]

2. (16)

The multipole expansion (13) can thus be written for|r| < rex as

U(t, r) = 1

4π

∑
lm

∞∑
n=1

c
(lm)
U n (t)

∫
exp(iq(l)n · r)Ylm(q̂(l)n ) dq̂(l)n (17)

whereq(l)n are vectors with polar angleŝq(l)n and discrete moduli|q(l)n | = q(l)n , and where the
identity

jl(qr)i
lYlm(r̂) = 1

4π

∫
exp(iq · r)Ylm(q̂) dq̂ (18)

is employed.
In the double-folding integral of equation (9), the value of the functionU(t, r) is required

only when

|r| = |R + r2 − r1| 6 rmax= R +R1 +R2 (19)

whereR is the separation of the centres of the two densities, andR1 andR2 are the radii beyond
which the uniform densitiesρ1(r1) andρ2(r2), respectively, vanish—this is simply because
the productρ1(r1)ρ2(r2) in the integrand of (9) is bound to be zero when|r| > rmax. Thus,
the validity of the Fourier–Bessel expansion (17) in the double-folding integral of equation
(9) will be guaranteed when the expansion radiusrex > rmax. Substituting then the expansion
(17) with r = R + r2 − r1 and an expansion radiusrex > rmax in equation (9), one obtains a
Fourier–Bessel expansion for the BR geometric factorC̄

(I,II )
U :

C̄
(I,II )
U = 1

4π

∑
lm

∞∑
n=1

c̄
(lm)
U n

∫
ρ̃1(−q(l)n )ρ̃2(q

(l)
n )exp(iq(l)n ·R)Ylm(q̂(l)n ) dq̂(l)n . (20)
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Here,

c̄
(lm)
U n =

1

1t11t2

∫ 1t1

0
dt1

∫ T +1t2

T

dt2 c
(lm)
U n (t) (21)

are the time averages of the coefficients (15), andρ̃1(−q(l)n ) and ρ̃2(q
(l)
n ) are the Fourier

transforms of the densitiesρk(rk),

ρ̃k(q) =
∫
ρk(rk) exp(iq · rk) drk (22)

evaluated at the pointsq = −q(l)n andq(l)n , respectively.
The Fourier transforms̃ρk(q) can be expanded in multipoles also,

ρ̃k(q) =
∑
lkmk

ρ̃
(k)
lkmk
(q)i lk Ylkmk (q̂) (23)

which are given in terms of the similarly defined multipolesρ(k)lkmk (rk) of the densitiesρk(rk)
themselves by

ρ̃
(k)
lkmk
(q) = 4π i lk

∫ ∞
0
ρ
(k)
lkmk
(rk)jlk (qrk)r

2
k drk. (24)

When the multipole expansions (23) are substituted in (20), the products of spherical harmonics
are expanded in terms of single spherical harmonics, and the identity (18) is used again, the
Fourier–Bessel expansion of the BR geometric factorC̄

(I,II )
U can be written finally as†

C̄
(I,II )
U = 1

4π

∑
lm

∑
l1m1
l2m2

∞∑
n=1

c̄
(lm)
U n (−1)ml̂l̂1l̂2i−l1ρ̃(1)l1m1

(q(l)n )i
l2ρ̃

(2)
l2m2
(q(l)n )

×
∑
λ′λ

λ̂′2λ̂
(
l1 l2 λ′

m1 m2 −µ′
)(

l1 l2 λ′

0 0 0

)(
λ′ l λ

µ′ m −µ
)

×
(
λ′ l λ

0 0 0

)
jλ(q

(l)
n R)i

λYλµ(R̂) (25)

wherel̂ = (2l + 1)1/2 etc, and the large parenthesis denote 3-j coefficients;µ′ = m1 +m2 and
µ = m + m1 + m2. In this way, when the multipole expansions of the functionU(t, r) and
the densitiesρk(rk) are given, the evaluation of the eight-dimensional integral (9) is reduced
to the evaluation of the one-dimensional integrals (15) forc

(lm)
U n (t) and (24) forρ̃(k)lkmk (q

(l)
n ),

of the two-dimensional integrals (21) for the time averagesc̄
(lm)
U n , and of the Fourier–Bessel

expansion (25), where, in principle, only the number of terms in the expansion controls the
degree of approximation to the exact value of the BR geometric factorC̄

(I,II )
U .

We now turn to the calculation of the Fourier–Bessel coefficients (15) and their time
averages (21). It turns out that with the functional forms (10)–(12) taken byU(t, r), these
quantities can be evaluated in terms of elementary functions. Let us first determine the
multipole expansion of the functionUAxx (t, r), given by equation (10). First, we regularize
the space derivative part ofUAxx (t, r) by

∂2

∂x1∂x2

δ(t − r)
r

= lim
ε→0

∂2

∂x1∂x2

δ(t − r)
r + ε

(26)

† Cf equation (21) of [10], which is reconciled with our equation (25) on noting that our displacementr = R+r2−r1
is defined there asr = R + r1 − r2, and that [̃ρlm(q)]∗ = (−1)mρ̃l−m(q) for a real densityρ(r).
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where the limitε → 0 is understood to be taken only after a double integration. This yields

∂2

∂x1∂x2

δ(t − r)
r

= − lim
ε→0

{[
δ′′(t − r)
r + ε

+
3r + ε

r(r + ε)2
δ′(t − r) +

3r + ε

r(r + ε)3
δ(t − r)

]
× (x2 − x1)

2

r2
− δ

′(t − r)
r(r + ε)

− δ(t − r)
r(r + ε)2

}
(27)

while the time derivatives give

∂2

∂t1∂t2

δ(t − r)
r

= −δ
′′(t − r)
r

. (28)

Now

1

r2
(x2 − x1)

2 = 2π

3
[Y1−1(r̂)− Y11(r̂)]

2 = 1

3
+

√
2π

15
Y2−2(r̂)− 1

3

√
4π

5
Y20(r̂)

+

√
2π

15
Y22(r̂). (29)

Using this in (27), then substituting (27) and (28) in (10) and taking the limitε → 0 everywhere
except in theδ(t − r) term of the monopole component, we obtain the functionUAxx (t, r) as
a multipole sum

UAxx (t, r) = −
2

3

√
4π

[
δ′′(t − r)

r
+ lim
ε→0

ε

(r + ε)3
δ(t − r)

r

]
i0Y00(r̂)−

√
2π

15

[
δ′′(t − r)

r

+ 3
δ′(t − r)
r2

+ 3
δ(t − r)
r3

]
i2
[
Y2−2(r̂)−

√
2
3Y20(r̂) + Y22(r̂)

]
. (30)

The limit ε → 0 was performed in the multipole expansion ofUAxx (t, r) everywhere except
in theδ(t − r) term of the monopole component because it can be seen easily that it is only
with this term that the regularization (26) can contribute to the geometric factorA(I,II )xx . No
regularization is required in the functions (11) and (12), which turn out not to contain any
monopole componets:

UAxy (t, r) = −i

√
2π

15

[
δ′′(t − r)

r
+ 3
δ′(t − r)
r2

+ 3
δ(t − r)
r3

]
i2[Y2−2(r̂)− Y22(r̂)] (31)

UBxy (t, r) = i

√
4π

3

[
δ′′(t − r)

r
+
δ′(t − r)
r2

]
iY10(r̂). (32)

The multipolesUlm(r, t) of the various forms ofU(t, r) are found easily from
equations (30)–(32), and the integrals required for the monopole(l = 0), dipole (l = 1)
and quadrupole(l = 2) Fourier–Bessel coefficients (15) are evaluated as follows:∫ rex

0

[
δ′′(t − r)

r
+ lim
ε→0

ε

(r + ε)3
δ(t − r)

r

]
j0(qr)r

2dr = −q sin(qt)2(t)2(rex− t)

+1(0)(q, rex, t) +
1

q
lim
ε→0

ε sin(qt)

(t + ε)3
2(t)2(rex− t) (33)∫ rex

0

[
δ′′(t − r)

r
+
δ′(t − r)
r2

]
j1(qr)r

2dr = q cos(qt)2(t)2(rex− t) +1(1)(q, rex, t) (34)∫ rex

0

[
δ′′(t − r)

r
+ 3
δ′(t − r)
r2

+ 3
δ(t − r)
r3

]
j2(qr)r

2dr = q sin(qt)2(t)2(rex− t)

+1(2)(q, rex, t). (35)



Geometric factors in the Bohr–Rosenfeld analysis 2433

Here,

1(0)(q, rex, t) = δ(t)− cos(qrex)δ(t − rex)− rexj0(qrex)δ
′(t − rex) (36)

1(1)(q, rex, t) = − sin(qrex)δ(t − rex)− rexj1(qrex)δ
′(t − rex) (37)

1(2)(q, rex, t) = [cos(qrex)− j0(qrex)− j2(qrex)]δ(t − rex)− rexj2(qrex)δ
′(t − rex). (38)

These results are obtained following the rules that govern the use of the delta function and its
derivatives†:∫ x2

x1

f (x)δ(x − x0) dx = f (x0)2(x0 − x1)2(x2 − x0) (39)∫ x2

x1

f (x)δ′(x − x0) dx = −f ′(x0)2(x0 − x1)2(x2 − x0) + f (x2)δ(x2 − x0)

−f (x1)δ(x1− x0) (40)∫ x2

x1

f (x)δ′′(x − x0) dx = f ′′(x0)2(x0 − x1)2(x2 − x0)− f ′(x2)δ(x2 − x0)

+f ′(x1)δ(x1− x0) + f (x2)δ
′(x2 − x0)− f (x1)δ

′(x1− x0) (41)

where2(t) is the Heaviside step function:2(t) = 1 for t > 0, and2(t) = 0 for t < 0; and
utilizing the fact that limx→0 jl(x) = limx→0 d[xjl(x)]/dx = δ0l .

Using equations (30)–(35), the time-averaged Fourier–Bessel coefficients (21) needed
in (25) for the BR geometric factor̄A(I,II )xx are thus given by

c̄
(00)
Axxn
= 2

3

√
4π

1

w
(0)
n

[
q(0)n 〈sin(q(0)n t)2(t)2(rex− t)〉 − 〈1(0)(q(0)n , rex, t)〉

− 1

q
(0)
n

lim
ε→0
〈ε(t + ε)−3 sin(q(0)n t)2(t)2(rex− t)〉

]
(42)

c̄
(2±2)
Axxn
= −

√
3

2
c̄
(20)
Axxn
= −

√
2π

15

1

w
(2)
n

[q(2)n 〈sin(q(2)n t)2(t)2(rex− t)〉 + 〈1(2)(q(2)n , rex, t)〉]
(43)

for the BR geometric factor̄A(I,II )xy by

c̄
(2±2)
Axyn
= ±i

√
2π

15

1

w
(2)
n

[q(2)n 〈sin(q(2)n t)2(t)2(rex− t)〉 + 〈1(2)(q(2)n , rex, t)〉] (44)

and for the BR geometric factor̄B(I,II )xy by

c̄
(10)
Bxyn
= i

√
4π

3

1

w
(1)
n

[q(1)n 〈cos(q(1)n t)2(t)2(rex− t)〉 + 〈1(1)(q(1)n , rex, t)〉]. (45)

Here, the quantitiesw(l)n are given by equation (16), and the angular brackets denote the time
averaging

〈f (t)〉 ≡ 1

1t11t2

∫ 1t1

0
dt1

∫ T +1t2

T

dt2 f (t2 − t1). (46)

Let us first evaluate the time averages〈sin(qt)2(t)2(rex−t)〉and〈cos(qt)2(t)2(rex−t)〉.
A straightforward way of doing so is to integrate by parts in botht2 andt1, and to utilize the

† As a multidimensional integration with finite integration limits is involved here, care has to be taken to use the
derivatives of the delta function properly.
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fact that d2(x)/dx = δ(x):∫ 1t1

0
dt1

∫ T +1t2

T

dt2q sin[q(t2 − t1)]2(t2 − t1)2(rex− t2 + t1)

=
∫ 1t1

0

{
− cos[q(t2 − t1)]2(t2 − t1)2(rex− t2 + t1)|T +1t2

t2=T

+
∫ T +1t2

T

cos[q(t2 − t1)][δ(t2 − t1)2(rex− t2 + t1)

−2(t2 − t1)δ(rex− t2 + t1)] dt2

}
dt1

= 1

q
sin[q(T +1t2 − t1)]2(T +1t2 − t1)2(rex− T −1t2 + t1)|1t1t1=0

−1

q

∫ 1t1

0
sin[q(T +1t2 − t1)]2(T +1t2 − t1)δ(rex− T −1t2 + t1) dt1

−1

q
sin[q(T − t1)]2(T − t1)2(rex− T + t1)|1t1t1=0

+
1

q

∫ 1t1

0
sin[q(T − t1)]2(T − t1)δ(rex− T + t1) dt1

+
∫ 1t1

0
{2(t1− T )2(T +1t2 − t1)

− cos(qrex)2(rex− T + t1)2(T +1t2 − rex− t1)}dt1. (47)

Here, terms with sinx δ(x) were dropped immediately. This gives for the time average
〈sin(qt)2(t)2(rex−t)〉:
1t11t2 q 〈sin(qt)2(t)2(rex− t)〉

= 1

q
{sin[q(T +1t2 −1t1)]2(T +1t2 −1t1)2(rex− T −1t2 +1t1)

− sin[q(T +1t2)]2(T +1t2)2(rex− T −1t2)
− sin[q(T −1t1)]2(T −1t1)2(rex− T +1t1)

+ sin(qT )2(T )2(rex− T )
− sin(qrex)[2(T +1t2 − rex)2(1t1− T −1t2 + rex)

−2(T − rex)2(1t1− T + rex)]} − cos(qrex)2(1t1− T + rex)

×2(T +1t2 − rex)[min(1t1, T +1t2 − rex)−max(T − rex, 0)]

+2(1t1− T )2(T +1t2)[min(1t1, T +1t2)−max(T , 0)].

(48)

The time average〈cos(qt)2(t)2(rex−t)〉, calculated in a way similar to that for the time
average (48), yields

1t11t2 q 〈cos(qt)2(t)2(rex− t)〉
= 1

q
{cos[q(T +1t2 −1t1)]2(T +1t2 −1t1)2(rex− T −1t2 +1t1)

− cos[q(T +1t2)]2(T +1t2)2(rex− T −1t2)
− cos[q(T −1t1)]2(T −1t1)2(rex− T +1t1)

+ cos(qT )2(T )2(rex− T )− cos(qrex)[2(T +1t2 − rex)
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×2(1t1− T −1t2 + rex)−2(T − rex)2(1t1− T + rex)]

+2(T +1t2)2(1t1−1t2 − T )−2(T )2(1t1− T )} + sin(qrex)

×2(1t1− T + rex)2(T +1t2 − rex)

×[min(1t1, T +1t2 − rex)−max(T − rex, 0)]. (49)

The ambiguity that may arise in these expressions when the argument of the step function
vanishes is removed correctly by the definition2(0) = 1

2. The correctness of the somewhat
lengthy analytical expressions (48) and (49) was checked by performing the two-dimensional
integration numerically for cases with the time intervals(0,1t1) and(T , T +1t2) in all the
possible logical relations of one to another.

For the time averages〈1(l)(q, rex, t)〉, we need the time averages〈δ(t−rex)〉 and
〈δ′(t−rex)〉, which are evaluated easily to give

1t11t2 〈δ(t − rex)〉 = 2(1t1− T + rex)2(T +1t2 − rex)

×[min(1t1, T +1t2 − rex)−max(T − rex, 0)] (50)

1t11t2 〈δ′(t − rex)〉 = 2(T +1t2 − rex)2(1t1− T −1t2 + rex)

−2(T − rex)2(1t1− T + rex). (51)

These time averages vanish in the limitrex → ∞. Theε → 0 term in equation (42) can be
evaluated by taking the limitε → 0 already after one time integration, and the result is

1

q
lim
ε→0
〈ε(t + ε)−3 sin(qt)2(t)2(rex− t)〉

= 2(1t1− T )2(T +1t2)

21t11t2
[min(1t1, T +1t2)−max(T , 0)] (52)

which equals one-half of theq-independent term in (48), which, in turn, equals the average
〈δ(t − rex)〉 with rex = 0 of equation (50).

Using equations (48)–(52) and utilizing the fact that the quantitiesq(l)n rex are the roots of
the spherical Bessel functionsjl(x) and thusjl(q(l)n rex) = 0, the time-averaged Fourier–Bessel
coefficients (42)–(45) are obtained finally as follows:

c̄
(00)
Axxn
= 2

3

√
4π

1t11t2w
(0)
n q

(0)
n

{sin[q(0)n (T +1t2 −1t1)]2(T +1t2 −1t1)

×2(rex− T −1t2 +1t1)− sin[q(0)n (T +1t2)]2(T +1t2)

×2(rex− T −1t2)− sin[q(0)n (T −1t1)]2(T −1t1)2(rex− T +1t1)

+ sin(q(0)n T )2(T )2(rex− T )
− 1

2q
(0)
n 2(1t1− T )2(T +1t2)[min(1t1, T +1t2)−max(T , 0)]} (53)

c̄
(2±2)
Axxn
= −

√
3

2
c̄
(20)
Axxn
= ±ic̄(2±2)

Axyn
= −

√
2π

15

1

1t11t2w
(2)
n q

(2)
n

×{sin[q(2)n (T +1t2 −1t1)]2(T +1t2 −1t1)2(rex− T −1t2 +1t1)

− sin[q(2)n (T +1t2)]2(T +1t2)2(rex− T −1t2)
− sin[q(2)n (T −1t1)]2(T −1t1)2(rex− T +1t1) + sin(q(2)n T )2(T )

×2(rex− T )− sin(q(2)n rex){2(T +1t2 − rex)2(1t1− T −1t2 + rex)

−2(T − rex)2(1t1− T + rex) +2(1t1− T + rex)2(T +1t2 − rex)

×r−1
ex [min(1t1, T +1t2 − rex)−max(T − rex, 0)]}

+q(2)n 2(1t1− T )2(T +1t2)[min(1t1, T +1t2)−max(T , 0)]} (54)
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c̄
(10)
Bxy n
= i

√
4π

3

1

1t11t2w
(1)
n q

(1)
n

{cos[q(1)n (T +1t2 −1t1)]
×2(T +1t2 −1t1)2(rex− T −1t2 +1t1)

− cos[q(1)n (T +1t2)]2(T +1t2)2(rex− T −1t2)
− cos[q(1)n (T −1t1)]2(T −1t1)2(rex− T +1t1) + cos(q(1)n T )2(T )

×2(rex− T )− cos(q(1)n rex)[2(T +1t2 − rex)2(1t1− T −1t2 + rex)

−2(T − rex)2(1t1− T + rex)] + 2(T +1t2)2(1t1−1t2 − T )
−2(T )2(1t1− T )}. (55)

Equations (25) and (53)–(55) furnish a general solution to the problem of finding Fourier–
Bessel expansions of the representative BR geometric factors (6)–(8) with space regions
specified by the multipoles (24) of their Fourier transforms. Obviously, the formalism
developed can easily be used to give Fourier–Bessel expansions of all possible BR geometric
factors, and not only the representatives (6)–(8), as long as their space regions have well-
behaved multipole expansions.

3. BR geometric factors with spherical space regions

3.1. Fourier–Bessel expansions

Formula (25) gives a Fourier–Bessel expansion of the BR geometric factorC̄
(I,II )
U for the general

case when the uniform densitiesρk(rk) as well as the functionU(t, r) are not spherically
symmetric functions of space coordinates. Let us assume now that the densities are spherically
symmetric with radiiRk, ρk(rk) = ρk(rk) = (3/4πR3

k )2(Rk − rk). Such an assumption
should not entail any serious loss in generality as space regions of practical relevance can be
approximated by regions of spherical shape, but the main reason for considering spherical
space regions is that it simplifies considerably the formulation of the problem and the actual
calculations. With spherical space regions, only thel1 = l2 = 0 terms contribute in the
general formula (25). Substituting furtherρ̃(k)00 (q) = (4π)1/23j1(qRk)/qRk for the monopole
components of the Fourier transforms of the spherical uniform densitiesρk(rk), equation (25)
simplifies to

C̄
(I,II )
U = 9

R1R2

∑
lm

∞∑
n=1

c̄
(lm)
U n

(q
(l)
n )2

j1(q
(l)
n R1)j1(q

(l)
n R2)jl(q

(l)
n R)i

lYlm(R̂). (56)

But more importantly, this assumption allows an alternative and simpler formulation based on
a Fourier–Bessel expansion of one of the spherically symmetric densities, sayρ1(r1), instead
of the one based on the Fourier–Bessel expansion of the functionU(t, r).

Let us then expand the uniform densityρ1(r1) as a Fourier–Bessel series in the spherical
Bessel functionsj0(qnr1) in a range 06 r1 < rex:

ρ1(r1) =
∞∑
n=1

cnj0(qnr1). (57)

Here,qn = nπ/rex, and the coefficientscn are given by

cn = 2

rex

(
nπ

rex

)2 ∫ rex

0
ρ1(r1)j0

(
nπ

rex
r1

)
r2
1 dr1 = 3n

2r2
exR1

′ j1

(
nπ

rex
R1
′
)

(58)

whereR1
′ = min(R1, rex), with R1 the density’s radius. Since the value of the densityρ1(r1)

is needed in the multiple integral (9) that defines the BR geometric factorC̄
(I,II )
U only when

r1 = |R + r2 − r| 6 r1 max= R +R2 + max(T +1t2, 0) (59)
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whereR is the separation of the centres of the two densities, andR2 and max(T + 1t2, 0)
are respectively the radii beyond which the densityρ2(r2) and the functionU(t, r) vanish,
the expansion radiusrex should satisfy the relationrex > r1 max. Substituting then the
expansion (57) with an expansion radiusrex > r1 max in equation (9), and utilizing the
identity (18) forj0(qnr1),

j0(qnr1) = 1

4π

∫
exp(iqn · r1) dq̂n (60)

with r1 = R + r2 − r, one obtains for the BR geometric factorC̄(I,II )U a Fourier–Bessel
expansion:

C̄
(I,II )
U = 1

4π

∞∑
n=1

cnρ̃2(qn)

∫
¯̃
U(−qn) exp(iqn ·R) dq̂n. (61)

Here,

ρ̃2(qn) = 4π
∫ ∞

0
ρ2(r2)j0(qnr2)r

2
2dr2 = 3

j1(qnR2)

qnR2
(62)

is the Fourier transform of the uniform densityρ2(r2) with a radiusR2, and ¯̃U(q) is the
time-averaged Fourier transform of the functionU(t, r):

¯̃
U(q) = 1

1t11t2

∫ 1t1

0
dt1

∫ T +1t2

T

dt2

∫
drU(t, r) exp(iq · r). (63)

With the multipole expansion (13) ofU(t, r) and a further use of the identity (18), the time-
averaged Fourier transform (63) can be written also as a multipole sum

¯̃
U(q) =

∑
lm

¯̃
Ulm(q)i

lYlm(q̂) (64)

where

¯̃
Ulm(q) = 4π i l

1t11t2

∫ 1t1

0
dt1

∫ T +1t2

T

dt2

∫ ∞
0
r2dr Ulm(t, r)jl(qr). (65)

Using the multipole expansion (64) and again the identity (18), the Fourier–Bessel expansion
(61) of C̄(I,II )U now takes the form of a multipole sum:

C̄
(I,II )
U =

∑
lm

∞∑
n=1

cnρ̃2(qn)
¯̃
Ulm(qn)jl(qnR)Ylm(R̂). (66)

Substituting here forcn andρ̃2(qn) from equations (58) and (62), respectively, and writingqn
explicitly asnπ/rex, one obtains finally

C̄
(I,II )
U = 9

2πrexR1
′R2

∑
lm

∞∑
n=1

j1

(
nπ

rex
R1
′
)
j1

(
nπ

rex
R2

)
¯̃
Ulm

(
nπ

rex

)
jl

(
nπ

rex
R

)
Ylm(R̂)

(67a)

R1
′ = min(R1, rex) rex > R +R2 + max(T +1t2, 0). (67b)

Note that while different spherical Bessel function rootsq(l)n rex and associated weights
w(l)n are required with the different multipolaritiesl of the functionU(t, r) in the formula
(56) based on the Fourier–Bessel expansion of this function, here only the simple quantities
q(0)n = nπ/rex andw(0)n = r3

ex/2(nπ)
2 are used for all these multipolarities. For this practical

reason, when one of the densities is a spherically symmetric function, the formulation based
on the Fourier–Bessel expansion (57) is preferable to an application of the general formula
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(25) to such a case. Moreover, because the infinite-radius Fourier transform of the function
U(t, r) is now used, rather than the finite-radius transforms (33)–(35), the expressions for the
time-averaged multipoles (65) of the Fourier transform will be simpler than those required
in (42)–(45) for the coefficients̄c(lm)U n needed in the general formulation. It follows from

equations (15), (21), (42)–(45), (50)–(52) and (65) that the quantities¯̃Ulm(nπ/rex) needed in
(67) for the BR geometric factor̄A(I,II )xx are given by

¯̃
U
(Axx)

00 (q) = (4π)3/2 2
3[q 〈sin(qt)2(t)〉 − 3

2〈δ(t)〉] (68)

¯̃
U
(Axx)

2±2 (q) = −
√

3

2
¯̃
U
(Axx)

20 (q) = 4π

√
2π

15
q〈sin(qt)2(t)〉 (69)

for the BR geometric factor̄A(I,II )xy by

¯̃
U
(Axy)

2±2 (q) = ∓i4π

√
2π

15
q 〈sin(qt)2(t)〉 (70)

and for the BR geometric factor̄B(I,II )xy by

¯̃
U
(Bxy)

10 (q) = −4π

√
4π

3
q 〈cos(qt)2(t)〉. (71)

Here, the time averages〈sin(qt)2(t)〉 and〈cos(qt)2(t)〉 are the limitsrex→∞ of the finite-
radius time averages (48) and (49):

1t11t2q〈sin(qt)2(t)〉
= 1

q
{sin[q(T +1t2 −1t1)]2(T +1t2 −1t1)− sin[q(T +1t2)]

×2(T +1t2)− sin[q(T −1t1)]2(T −1t1) + sin(qT )2(T )}
+2(1t1− T )2(T +1t2)[min(1t1, T +1t2)−max(T , 0)] (72)

1t11t2 q 〈cos(qt)2(t)〉
= 1

q
{cos[q(T +1t2 −1t1)]2(T +1t2 −1t1)− cos[q(T +1t2)]

×2(T +1t2)− cos[q(T −1t1)]2(T −1t1) + cos(qT )2(T )

+2(T +1t2)2(1t1−1t2 − T )−2(T )2(1t1− T )} (73)

and the quantity〈δ(t)〉 in (68) is the time average (50) withrex = 0, which also happens to
equal theq-independent term in (72) and twice theε → 0 term of equation (52).

The greatly simplified (when compared with those of the general formulation) equations
(67)–(73) give the Fourier–Bessel expansions of the representative BR geometric factors (6)–
(8) with spherical space regions; it is gratifying to note that it was possible to express the
terms of these expansions in terms of elementary functions. In fact, it turns out that the BR
geometric factors with spherical space regions can be evaluated in closed form, which will
provide a means of testing the accuracy of the Fourier–Bessel results, but this is most easily
accomplished starting with the standard Fourier-integral treatment of the multiple folding
integrals involved.

3.2. Closed-form evaluation

Using the standard Fourier-integral method of calculating multiple folding integrals, a BR
geometric factorC̄(I,II )U with spherical space regionsρk(rk),

C̄
(I,II )
U = 1

1t11t2

∫ 1t1

0
dt1

∫ T +1t2

T

dt2

∫
ρ1(r1)dr1

∫
ρ2(r2) dr2U(t, r) (74)
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can be written as a multipole expansion, the multipoles of which are Fourier integrals:

C̄
(I,II )
U = 4π

(2π)3
∑
lm

∫ ∞
0
ρ̃1(q)ρ̃2(q)

¯̃
Ulm(q)jl(qR)q

2dqYlm(R̂). (75)

Here, ¯̃Ulm(q) are the multipoles (65) of the time-averaged Fourier transform of the function
U(t, r), given by equations (68)–(73), and

ρ̃k(q) = 4π
∫ ∞

0
ρk(rk)j0(qrk)r

2
kdrk = 3

j1(qRk)

qRk
(76)

are the Fourier transforms of the spherically symmetric uniform densitiesρk(rk), which have
radiiRk and are normalized to unit volume. This result follows from the convolution theorem
(see, for example, [12]) according to which the Fourier transform of a folding integral, like the
one in equation (74), is the product of the Fourier transforms of the functions appearing in the
folding integral; equation (75) is simply the time average of the Fourier transformation of the
folding integral from the momentum space back to the configuration space. In general, Fourier
integrals of the type of those in equation (75) have to be evaluated numerically, and the great
advantage of the Fourier–Bessel formulation is that it replaces such numerical integration by
the analytical method of a series expansion. However, in the case of spherical space regions
with the Fourier transforms (76), and with the time-averaged Fourier transforms (68)–(73) of
the functionsU(t, r), the Fourier integrals in (75) can in fact be evaluated in closed form, and
we present such evaluation in this section.

The quantities¯̃Ulm(q) in (75), as given by equations (68)–(73), are linear combinations
of terms of the formτj0(τq) and aq-independent term for the multipolaritiesl = 0, 2, and
of terms of the formτj−1(τq) and a 1/q term for the multipolarityl = 1, while the Fourier
transforms (76) of the densities are of the formj1(aq)/aq. We define therefore the integrals

ji 4(n; l1, l2, l3, l4;α, β, γ, δ) =
∫ ∞

0
jl1(αx)jl2(βx)jl3(γ x)jl4(δx)

dx

xn
(77)

the evaluation of which is required in (75) for the parameter values (i)n = 0, l1 = l2 = 1,
l3 = 0, l4 = 0, 2; (ii) n = 0, l1 = l2 = 1, l3 = −1, l4 = 1; and, on account of the 1/q term in
(73), (iii) n = 1, l1 = l2 = 1, l3 = 0 (with γ = 0), l4 = 1.

In principle, it should be possible to evaluate the integral ji4(n; l1, l2, l3, l4;α, β, γ, δ)
in closed form for all the integer valuesn and l1, l2, l3, l4 for which the integral exists, as
the integrand can be written as a sum of a finite number of terms, with each term having
the forma sin(bx)/xk or a cos(bx)/xk, wherek is an integer, and the indefinite integrals of
such terms can be done in terms of the sine or cosine integrals. In practice, however, such a
procedure is prohibitively lengthy for all but very small values of the parametersn, l1, l2, l3, l4:
for example, the integrand of the integral ji4(0; 1, 1, 0, 2;α, β, γ, δ) has already 96 terms of
the above-mentioned form withk ranging from four to eight, and the indefinite integral of
each of these terms generates in turnk new terms, giving in total 572 terms. Furthermore,
complications arise when the limitx → 0 (or x → ∞, depending on the definition of the
sine integral) is taken in the sine integrals, which have arguments of the formax, as the signs
of the parametersa, which are linear combinations of the parametersα, β, γ andδ, must be
determined suitably. Remarkably, the computing systemMathematica[13] is able to perform
the definite integrations in the integrals ji4(n; l1, l2, l3, l4;α, β, γ, δ) required directly. After
considerable simplifications, and using an economic way of writing linear combinations that
contain terms with permuting signs by means of the definitions

αn = α βn = (−1)nβ γn = (−1)[n/2]γ δn = (−1)[n/4]δ

δ′n = (−1)[n/2]δ (78)
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where [x] is the integer part ofx, the results are as follows:

ji 4(0; 1, 1, 0, 0;α, β, γ, δ) =
π

1920αβ

7∑
n=0

|αn + βn + γn + δn|3
αnβnγnδn

×[4α2
n + (4βn − γn − δn)(−3αn + βn + γn + δn)] (79)

ji 4(0; 1, 1, 0, 2;α, β, γ, δ) = −
π

26 880αβδ2

7∑
n=0

|αn + βn + γn + δn|3
αnβnγnδn

×{(αn + βn + γn)(αn + βn + γn − 3δn)[6α
2
n + (6βn − γn)

×(−5αn + βn + γn)] + [8(α2
n − 12αnβn + β2

n) + 9(αn + βn)γn + γ 2
n ]δ2

n

+[24(αn + βn)− 11γn]δ
3
n − 8δ4

n} (80)

ji 4(0; 1, 1,−1, 1;α, β, γ, δ) = − π

11 520αβγ δ

7∑
n=0

|αn + βn + γn + δn|3
αnβnδn

×{5α3
n − 3α2

n(5βn − 3γn + 5δn) + (−3αn + βn + γn + δn)

×[5β2
n + (γn − 5δn)(4βn − γn − δn)]}. (81)

Here, it is assumed that the parametersα, β, γ andδ are all nonzero; the required integrals
that have some of these parameters equal to zero were evaluated separately:

ji 4(0; 1, 1, 0, 0;α, β,0, 0) =
π

12αβ

1∑
n=0

|αn + βn|
αnβn

(α2
n − αnβn + β2

n) (82)

ji 4(0; 1, 1, 0, 0;α, β, γ,0) =
π

192αβ

3∑
n=0

(αn + βn + γn)|αn + βn + γn|
αnβnγn

×[3(αn − βn)2 + 2(αn + βn)γn − γ 2
n ] (83)

ji 4(0; 1, 1, 0, 2;α, β,0, δ) = −
π

384αβδ2

3∑
n=0

(αn + βn + δ′n)|αn + βn + δ′n|
αnβnδ′n

×(αn + βn − δ′n)2(α2
n − 4αnβn + β2

n − δ′n2
) (84)

ji 4(1; 1, 1, 0, 1;α, β,0, δ) = −
π

1152αβδ

3∑
n=0

|αn + βn + δ′n|3
αnβnδ′n

×[α3
n − 3αn(β

2
n − 4βnδ

′
n + δ′n

2
) + (βn + δ′n)(−3α2

n + β2
n − 4βnδ

′
n + δ′n

2
)]. (85)

Here, the definitionj0(0) = 1 is assumed in the integrals (77); as limx→0 jl(x) = 0
when l > 0, the integrals ji4(n; 1, 1, l3, l4;α, β, γ,0) with l4 > 0 vanish. The integral
ji 4(0; 1, 1, 0, 0;α, β,0, δ) that is required also is given already by the integral (83):

ji 4(0; 1, 1, 0, 0;α, β,0, δ) = ji 4(0; 1, 1, 0, 0;α, β, δ,0). (86)

Using equations (68)–(73), (75) and (76), the integrals (79)–(86), and the definitions

a
(Axx)
00 = (4π)3/2 2

3
a
(Axx)
2±1 = 0 a

(Axx)
2±2 = −

√
3

2
a
(Axx)
20 = 4π

√
2π

15
(87)

a
(Axy)

20 = a(Axy)2±1 = 0 a
(Axy)

2±2 = ∓i4π

√
2π

15
b
(Bxy)

10 = −4π

√
4π

3
(88)

τ0 = 0 τ1 = T +1t2 −1t1 τ2 = T +1t2 τ3 = T τ4 = T −1t1 (89)

g
(0)
0 = −

2(−τ4)2(τ2)

21t11t2
[min(1t1, τ2)−max(τ3, 0)] (90)



Geometric factors in the Bohr–Rosenfeld analysis 2441

g
(1)
0 =

1

1t11t2
[2(τ2)2(−τ1)−2(τ3)2(−τ4)] (91)

g
(2)
0 =

2(−τ4)2(τ2)

1t11t2
[min(1t1, τ2)−max(τ3, 0)] (92)

g
(l)
i = (−1)i+1 2(τi)

1t11t2
[τi + zr(τi)δ1l ] l = 0, 1, 2, i = 1, 2, 3, 4 (93)

where

zr(x) =
{

1 for x = 0

0 for x 6= 0
(94)

and the definition2(0) = 1
2 is used again, we obtain finally the following closed-form

expressions for the representative BR geometric factors (6)–(8) with spherical space regions:

Ā(I,II )xx =
4π

(2π)3
9

R1R2

∑
l=0,2
m

a
(Axx)
lm

4∑
i=0

g
(l)
i ji 4(0; 1, 1, 0, l;R1, R2, τi, R)Ylm(R̂) (95)

Ā(I,II )xy =
4π

(2π)3
9

R1R2

∑
m

a
(Axy)

2m

4∑
i=0

g
(2)
i ji 4(0; 1, 1, 0, 2;R1, R2, τi, R)Y2m(R̂) (96)

B̄(I,II )xy = 4π

(2π)3
9

R1R2
b
(Bxy)

10

4∑
i=0

g
(1)
i ji 4[zr(τi); 1, 1, zr(τi)−1, 1;R1, R2, τi, R]Y10(R̂). (97)

4. Numerical results and concluding remarks

The convergence properties of the Fourier–Bessel expansions were examined in numerical
calculations of some representative examples of BR geometric coefficients with spherical space
regions, using the formula (67) with the Fourier–Bessel coefficients given by equations (68)–
(73) and an expansion radiusrex = R +R2 + max(T +1t2, 0).

For the BR geometric factors to have an appreciable magnitude, it is obvious that, in a
system of units where the speed of lightc = 1, the separation in space and time of the space-time
regions must not be much greater than the dimensions of the space-time regions themselves.
The calculations were done using an unspecified unit of length; choosing the millimetre as the
unit of length, for example, the unit of time equals approximately 3.33×10−12 s in a system of
units withc = 1. This illustrates the fact that, on a realistic laboratory scale, the time intervals
corresponding to even relatively large distances are very short, but we leave aside the question
of how field measurements occupying and/or separated by such short time intervals can be
realized.

The numerical values of the representative BR geometric factors (6)–(8) for various
spherical space-time regions with dimensions of the order of unity and similar or smaller
space-time separations, in ac = 1 system of units, are collected in table 1. As the quantities
that are required in the field commutation relations are the absolute values of the differences
C̄
(I,II )
U − C̄(II ,I)U , while some BR spring constants require the value of the sumC̄

(I,II )
U + C̄(II ,I)U ,

the ‘reverse’ geometric factor̄C(II ,I)U was calculated together with a given geometric factor
C̄
(I,II )
U . This was done by interchanging the radiiR1 andR2 of the spherical space regions and

changing their relative displacementR to−R (i.e., changing the polar anglesθ andφ of R
toπ − θ andφ +π ), together with interchanging the time intervals1t1 and1t2 and changing
their separationT to−T . BR geometric factors̄A(I,I)xx with fully coinciding space-time regions
were calculated also as they are required for some of the BR spring constants. When the sphere
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separationR = 0, only the monopole (l = 0) term contributes in the expansion (67) because
jl(qnR) → 0 for l > 0 asR → 0, and thus the BR factors̄A(I,II )xy andB̄(I,II )xy with spherical
space regions vanish whenR = 0. The Fourier–Bessel expansions of the BR geometric factors,
except those of the geometric factorsA(I,II )xx for spherical space regions whose centres coincide,
converge rapidly as less than a hundred terms were required for the four-digit accuracy with
which the geometric factors are printed in table 1.

The slow convergence of expansion (67) in the case of spherical space regions with

coinciding centres is due to the presence of aq-independent term in the quantitỹ̄U
(Axx)

00 (q) of
equation (68). However, the contribution of this term to the BR geometric factorĀ(I,II )xx has
then a simple form and can be summed easily. With sphere separationR = 0, it follows from
equations (67) and (68) that theq-independent term contributes to the BR factorĀ(I,II )xx the
quantity

Ā(I,II )xx (g
(0)
0 ) = 12g(0)0

πR1
′R2

π

rex

∞∑
n=1

j1

(
nπ

rex
R1
′
)
j1

(
nπ

rex
R2

)
(98)

whereg(0)0 , defined by equation (90), is theq-independent term in question. The series in (98)
is a Fourier–Bessel representation of the simplest of the integrals evaluated in section 3.2:

π

rex

∞∑
n=1

j1

(
nπ

rex
R1
′
)
j1

(
nπ

rex
R2

)
=
∫ ∞

0
j1(R1

′q)j1(R2q) dq

= ji 4(0; 1, 1, 0, 0;R1
′, R2, 0, 0) = R<

R2
>

π

6
. (99)

Here, the result (82) is simplified usingR< andR>, which are respectively the lesser and the
greater of the radiiR1

′ andR2, and the parameterrex should be such thatrex > R>, which
condition is guaranteed by that of equation (67b). When the result (99) is used in the expansion
(67) in the cases of sphere separationR = 0, the rate of convergence improves dramatically
and becomes similar to that of the geometric factors for space regions with noncoinciding
centres.

The accuracy of the numerical results of table 1, obtained using the Fourier–Bessel
expansions, was checked using the closed-form expressions (95)–(97). As no calculated
values of the BR geometric factors could be found in the literature, this is the only check of
the correctness and accuracy of our results. Admittedly, this check is not a fully independent
one, as both the closed-form expressions and Fourier–Bessel expansions are obtained using
Fourier-transform methods. However, the calculations reported here use only proven analytical
methods, of which Fourier integrals and Fourier–Bessel expansions are a part, and thus our
results would be invalidated only if the same algebraic errors were made in the derivation of the
closed-form and Fourier–Bessel expressions. In this connection, we note that the analytical
expressions (48) and (49) for the double time averages, used in both the Fourier-integral
and Fourier–Bessel formulations, were checked by doing the two-dimensional integrations
involved numerically.

A rather interesting result of the calculations is that the geometric factorsĀ(I,I)xx with
fully coinciding space-time regions turn out to have negative values. The closed-form
expression (95) for the geometric factorĀ(I,II )xx with radii R1 = R2 = R0, time intervals
1t1 = 1t2 = 1t0 and separationsR = T = 0 simplifies to†

Ā(I,I)xx = −
1

8R4
0κ
(4 +κ)(2− κ)22(2− κ)− 1

R4
0κ

(100)

† Using this simple expression, it can be shown that, contrary to a conclusion of [8], the BR average ‘self-force’ on
the field measurement’s test body approximates correctly the average self-force that obtains when the duration of the
momentum measurements on a test body of sufficiently great mass is sufficiently short [9].
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Table 1. Representative BR geometric factorsC̄(I,II )U for space-time regions I and II specified by
space spheres of radiiR1 andR2, and time intervals1t1 and1t2, respectively, with the centre of
the second sphere displaced from that of the first one by a vector of spherical coordinatesR, θ , φ,
and the beginning of the second time interval separated from that of the first one by a time interval
T ; units such that the speed of lightc = 1 are used.

R1 R2 R θ φ 1t1 1t2 T C̄
(I,II )
U

Ā
(I,II )
xx 1 1 0 – – 1 1 0 −1.625× 10+0

Ā
(I,II )
xx 10 10 0 – – 1 1 0 −2.850× 10−3

Ā
(I,II )
xx 1 1 0 – – 1 2 0.5 1.953× 10−1

Ā
(I,II )
xx

a 1 1 0 – – 2 1 −0.5 −5.664× 10−1

Ā
(I,II )
xx 1 1 1 1

6π
1
3π 1 1 0.5 −6.407× 10−2

Ā
(I,II )
xx

a 1 1 1 5
6π

4
3π 1 1 −0.5 −4.530× 10−1

Ā
(I,II )
xy 1 1 1 1

6π
1
3π 1 1 0.5 6.636× 10−2

Ā
(I,II )
xy

a 1 1 1 5
6π

4
3π 1 1 −0.5 5.901× 10−3

B̄
(I,II )
xy 1 1 1 1

6π
1
3π 1 1 0.5 −2.730× 10−1

B̄
(I,II )
xy

a 1 1 1 5
6π

4
3π 1 1 −0.5 1.675× 10−1

Ā
(I,II )
xx 1 2 1 1

6π
1
3π 1 2 0.5 7.454× 10−2

Ā
(I,II )
xx

a 2 1 1 5
6π

4
3π 2 1 −0.5 −8.914× 10−2

Ā
(I,II )
xy 1 2 1 1

6π
1
3π 1 2 0.5 3.493× 10−3

Ā
(I,II )
xy

a 2 1 1 5
6π

4
3π 2 1 −0.5 −3.884× 10−4

B̄
(I,II )
xy 1 2 1 1

6π
1
3π 1 2 0.5 −2.560× 10−2

B̄
(I,II )
xy

a 2 1 1 5
6π

4
3π 2 1 −0.5 4.126× 10−3

a The ‘reverse’ geometric factor̄C(II ,I)U of the preceding entry.

whereκ = 1t0/R0. For a fixed value ofR0, this function of the ratioκ increases monotonically
from−∞ whenκ → 0 to the value of zero forκ →∞. Forκ > 2, the geometric factor̄A(I,I)xx

reduces to the value−1/R4
0κ, and so the BR average ‘self-force’ [1] on the field measurement’s

test body of charge densityρI is thenρ2
I V

2
I 1t0D

(I)
x Ā

(I,I)
xx = −ρ2

I V
2
I D

(I)
x /R

3
0, which is simply

the electrostatic force of attraction between the test and neutralizing bodies when their centres
are displaced by a distance|D(I)

x | � R0. The negativity of the BR geometric factorĀ(I,I)xx means
that the spring constantkI = ρ2

I V
2
I TIĀ

(I,I)
xx of the spring that is used in a BR field measurement

involving a space-time regionVI, TI to compensate the test body’s average ‘self-force’ has to
be negative. While it is certainly possible to envisage a spring mechanism that would provide a
force proportional to and in the direction of a test body’s displacement†, we note that Bohr and
Rosenfeld did not consider it necessary to make a comment on this rather unusual specification
that their measurement procedure would place on the spring mechanism—but one can now
only speculate whether Bohr and Rosenfeld were in fact aware of this consequence of their
analysis‡. In any case, despite its inherent instability, a spring mechanism with negative spring
constant should present no difficulty of principle for a BR measurement procedure because a

† A spring system with a negative spring constant can be constructed as follows. Two elastically compressible rods,
each of spring constantk and lengthl + d when not stressed, are aligned ‘head to tail’ along a common axis and
joined via a movable joint, while their outer ends are fastened using similar joints to rigid supports so that this spring
system is compressed to a total length 2l. It can be shown easily that a body attached to the middle joint and moved a
small distancex, x � l, x � d, from the system’s axis and in a direction perpendicular to it, will experience a force
F = (2kd/l)x = −κx, which is proportional to and acting in the direction of the displacementx, i.e., the spring
constantκ = −2kd/l of such a system is negative.
‡ A hint that Bohr and Rosenfeld were aware of the possibility of the geometric factorĀ

(I,I)
xx being negative is given

by their careful writing of its square root as|Ā(I,I)xx |1/2.
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BR spring, together with the test body to which it is attached, is supposed to be released only
for the exact duration of the field measurement, and the spring force is designed so that its
effect is compensated by the test body’s ‘self-force’.

We conclude that a well-controlled method for the computation of the BR geometric
factors was developed using Fourier–Bessel expansions. The efficiency and accuracy of the
method were tested numerically in the case of spherical space regions when a BR geometric
factor can be represented by a Fourier–Bessel series with terms expressed entirely in terms of
elementary functions, and it is possible to obtain the factor in terms of manageable closed-
form expressions. The space-time-averaged electromagnetic-field commutators, as well as the
formal expressions and‘gedanken’experimental procedures of the famous BR analysis of the
measurability of the electromagnetic field now can be translated easily and accurately into
concrete numbers.
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